Observable Subspaces for 3D Human Motion Recovery

Andrea Fossati, Mathieu Salzmann, Pascal Fua
Computer Vision Laboratory (CVLAB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Task
3D Human Body Tracking from Monocular Sequences

Standard Approaches

The articulated body models used to represent human motion typically have many degrees of freedom, usually expressed as joint angles that are highly correlated. The true range of motion can therefore be represented by latent variables that span a low-dimensional space.

Standard approaches that adopt this idea have typically 2 main drawbacks:
- Initialization both of the latent variables and of the pose is not straightforward.
- The used variables usually do not have an intuitive meaning.

Contribution
We propose to make use of directly observable image quantities as latent variables to overcome both issues

Training

\[y_i \]
PCA Training

\[q_i \]

\[x_i \]
GP Training

Results

Observable Variables: Examples

Skating & Skiing (Feet' Trajectory) Golf (Hands' Trajectory)

Run-Time

Observable Variables

\[x_i \]

\[q_i \]

\[y_i \]

Pose Sequence defined by Joint Angles

PCA Representation of the Pose Sequence

Observable Variables corresponding to the Pose Sequence

PCA Linear Mapping + Image Based Refinement

Task

3D Human Body Tracking from Monocular Sequences

Observables Subspaces for 3D Human Motion Recovery

Andrea Fossati, Mathieu Salzmann, Pascal Fua
Computer Vision Laboratory (CVLAB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Standard Approaches

The articulated body models used to represent human motion typically have many degrees of freedom, usually expressed as joint angles that are highly correlated. The true range of motion can therefore be represented by latent variables that span a low-dimensional space.

Standard approaches that adopt this idea have typically 2 main drawbacks:
- Initialization both of the latent variables and of the pose is not straightforward.
- The used variables usually do not have an intuitive meaning.

Contribution

We propose to make use of directly observable image quantities as latent variables to overcome both issues

Training

\[y_i \]
PCA Training

\[q_i \]

\[x_i \]
GP Training

Results

Observable Variables: Examples

Skating & Skiing (Feet' Trajectory) Golf (Hands' Trajectory)

Run-Time

Observable Variables

\[x_i \]

\[q_i \]

\[y_i \]

Pose Sequence defined by Joint Angles

PCA Representation of the Pose Sequence

Observable Variables corresponding to the Pose Sequence

PCA Linear Mapping + Image Based Refinement

Task

3D Human Body Tracking from Monocular Sequences

Observable Subspaces for 3D Human Motion Recovery

Andrea Fossati, Mathieu Salzmann, Pascal Fua
Computer Vision Laboratory (CVLAB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Standard Approaches

The articulated body models used to represent human motion typically have many degrees of freedom, usually expressed as joint angles that are highly correlated. The true range of motion can therefore be represented by latent variables that span a low-dimensional space.

Standard approaches that adopt this idea have typically 2 main drawbacks:
- Initialization both of the latent variables and of the pose is not straightforward.
- The used variables usually do not have an intuitive meaning.

Contribution

We propose to make use of directly observable image quantities as latent variables to overcome both issues

Training

\[y_i \]
PCA Training

\[q_i \]

\[x_i \]
GP Training

Results

Observable Variables: Examples

Skating & Skiing (Feet' Trajectory) Golf (Hands' Trajectory)

Run-Time

Observable Variables

\[x_i \]

\[q_i \]

\[y_i \]

Pose Sequence defined by Joint Angles

PCA Representation of the Pose Sequence

Observable Variables corresponding to the Pose Sequence

PCA Linear Mapping + Image Based Refinement

Task

3D Human Body Tracking from Monocular Sequences

Observable Subspaces for 3D Human Motion Recovery

Andrea Fossati, Mathieu Salzmann, Pascal Fua
Computer Vision Laboratory (CVLAB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Standard Approaches

The articulated body models used to represent human motion typically have many degrees of freedom, usually expressed as joint angles that are highly correlated. The true range of motion can therefore be represented by latent variables that span a low-dimensional space.

Standard approaches that adopt this idea have typically 2 main drawbacks:
- Initialization both of the latent variables and of the pose is not straightforward.
- The used variables usually do not have an intuitive meaning.

Contribution

We propose to make use of directly observable image quantities as latent variables to overcome both issues

Training

\[y_i \]
PCA Training

\[q_i \]

\[x_i \]
GP Training

Results

Observable Variables: Examples

Skating & Skiing (Feet' Trajectory) Golf (Hands' Trajectory)

Run-Time

Observable Variables

\[x_i \]

\[q_i \]

\[y_i \]

Pose Sequence defined by Joint Angles

PCA Representation of the Pose Sequence

Observable Variables corresponding to the Pose Sequence

PCA Linear Mapping + Image Based Refinement

Task

3D Human Body Tracking from Monocular Sequences

Observable Subspaces for 3D Human Motion Recovery

Andrea Fossati, Mathieu Salzmann, Pascal Fua
Computer Vision Laboratory (CVLAB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Standard Approaches

The articulated body models used to represent human motion typically have many degrees of freedom, usually expressed as joint angles that are highly correlated. The true range of motion can therefore be represented by latent variables that span a low-dimensional space.

Standard approaches that adopt this idea have typically 2 main drawbacks:
- Initialization both of the latent variables and of the pose is not straightforward.
- The used variables usually do not have an intuitive meaning.

Contribution

We propose to make use of directly observable image quantities as latent variables to overcome both issues

Training

\[y_i \]
PCA Training

\[q_i \]

\[x_i \]
GP Training

Results

Observable Variables: Examples

Skating & Skiing (Feet' Trajectory) Golf (Hands' Trajectory)

Run-Time

Observable Variables

\[x_i \]

\[q_i \]

\[y_i \]

Pose Sequence defined by Joint Angles

PCA Representation of the Pose Sequence

Observable Variables corresponding to the Pose Sequence

PCA Linear Mapping + Image Based Refinement

Task

3D Human Body Tracking from Monocular Sequences