Priors for People Tracking from Small Training Sets

Raquel Urtasun1 David Fleet2 Aaron Hertzmann2 Pascal Fua1

1 EPFL, Switzerland 2 University of Toronto, Canada
Monocular 3D people tracking is usually under-constrained. Priors resolve ambiguities but are difficult to learn because:

- human parameterizations are high-dimensional
- training data is hard to acquire
Approach

Off-line Learning

Mocap Data → Learning → Pose Model

On-line Tracking

Video → Tracking → Pose

Learning

Prior
Human Parameterization

Joint angles:
\[y = (\vec{\psi}_1, \ldots, \vec{\psi}_m) \in \mathcal{R}^d \]

Global pose:
\[G = (p, \vec{\psi}_G) \]
Latent Variable Models / Dimensionality Reduction

Low-dim. latent space \((X)\)
Joint angle pose space \((Y)\)

Mapping from latent points to poses, \(f(x)\)
Smooth density function over pose
Latent Variable Models / Dimensionality Reduction

PCA / PPCA
[Sidenbladh et al ’00; Urtasun et al ’04;]

Isomap / LLE / Spectral Methods
[Lee & Elgammal ’04; Sminchisescu & Jepson ’04; Wang et al ’03; …]

Mixture models
[Howe et al, 99; Sminchisescu & Jepson ’04; …]

Gaussian components
Log-likelihood
Gaussian Process Latent Variable Model (GPLVM)

Probabilistic, nonlinear dimensionality reduction [Lawrence 04]
- a nonlinear mapping from latent positions to pose space
- a smooth density function over pose space
- learning based on little data and minimal parameter tuning
The nonlinear manifold is modeled by Gaussian Process regression, with model averaging used to integrate out uncertainty in the model.

For the GPLVM we learn the GP mapping and the latent coordinates of the training poses.
GPLVM Learning

Training poses: \(\mathbf{Y} \equiv [\mathbf{y}_1, \ldots, \mathbf{y}_N]^T, \quad \mathbf{y}_n \in \mathcal{R}^d \)

Model parameters:

- 2D latent coordinates: \(\mathbf{X} \equiv \{\mathbf{x}_n\}_{n=1}^N \)
- RBF kernel hyperparameters: \(\bar{\beta} = \{\beta_j\} \)
- weights on output dimensions: \(\mathbf{W} = \text{diag}(w_1, \ldots, w_d) \)

Learning: estimate GPLVM parameters by maximizing

\[
p(\mathbf{Y} \mid \mathbf{X}, \bar{\beta}, \mathbf{W}) \quad p(\mathbf{X}, \bar{\beta}, \mathbf{W})
\]

data likelihood prior
The model M then provides a density function over new poses, with negative log likelihood:

$$L(x, y; M) = \frac{\|W(y - f(x))\|^2}{2\sigma^2(x)} + \frac{d}{2}\ln\sigma^2(x) + \frac{1}{2}\|x\|^2$$
3D People Tracking

Image Observations: $I_{1:t} \equiv (I_1, \ldots, I_t)$

State: $\phi_t = [G_t, y_t, x_t]$

GPLVM: M

Global pose \quad Joint angles \quad Latent coordinates

Posterior Distribution:

$$p(\phi_t | I_{1:t}, M) \approx p(I_t | \phi_t) p(\phi_t | \phi_{t-1}^{\text{MAP}}, \phi_{t-2}^{\text{MAP}}, M)$$

Likelihood \quad Dynamics + GPLVM

Online estimation by hill climbing on the negative log posterior:

$$- \ln p(I_t | \phi_t) + D(\phi_t; \phi_{t-1}^{\text{MAP}}, \phi_{t-2}^{\text{MAP}}) + L(x_t, y_t; M)$$
Measurement Model (WSL 2D Tracker)

2D positions of J joints are tracked (up to IID Gaussian noise):

$$- \ln p(I_t | \phi_t) = \frac{1}{2\sigma^2} \sum_{j=1}^{J} \| \hat{m}_t^j - P(p_t^j, \phi_t) \|^2 + c$$

$P(p_t^j, \phi_t)$ is the perspective projection of point j at time t.

\hat{m}_t^j is the associated image measurement.
Temporal Dynamics

A 2nd-order Markov model is assumed for joint angles and global position/orientation, with IID Gaussian process noise:

\[D(\phi_t; \phi_{t-1}^{\text{MAP}}, \phi_{t-2}^{\text{MAP}}) = \frac{||y_t - \hat{y}_t||^2}{2\sigma_y^2} + \frac{||G_t - \hat{G}_t||^2}{2\sigma_G^2} \]

with predictions:

\[\hat{y}_t = 2y_{t-1} - y_{t-2} \]

\[\hat{G}_t = 2G_{t-1} - G_{t-2} \]
GPLVM Prior: Walking

1 gait cycle on a treadmill
(84 joint angles, 24 active set points)
Tracking: Walking

Tracked 2D Points

Projected 3D Model

Animations from other viewpoints
SGPLVM Prior: Golf Swing

1 swing of golf club from CMU mocap database
(72 joint angles, 19 active set size)
Tracking: Short Swing

Projected 3D Model

Animations from other viewpoints
Tracking: Full Swing

Projected 3D Model

Animations from other viewpoints
Summary

Key Ideas:

- Prior models of human motion learned using the Gaussian Process Latent Variable Model
- Learning from just single training motion
- ML tracking with hill-climbing on log posterior

Limitations / Future work:

- Learning is sensitive to initialization and priors on model parameters
- Works best for small training sets
- Temporal dynamics and appearance models used